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Spin density fluctuations in a Heisenberg ferromagnet 
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Abstract me lon@tudind susceptibility. a measure of magnetization fluctuations. is studied 
within the fnmework of the Dyson Hamiltonian. REsults for models appropriale 10 EuO and €US 
show hat. ncar J,. the fluctuations included m the Haruce-Fwk approximation morc &an double 
the susceptibility. It  is shown hat inclusion of the fluctuauonr docs not change the exponent in 
the power law divergence of lhe susceptibility with respect10 a magnetic field Results for lhe 
magnetization and spin-wave renonnalizalion. including the inRuence of the dipolar energy, are 
given for EuO and EuS. and compared favourably with the available experimental data 

1. Introduction 

Several groups of researchers have recently noted a somewhat remarkable shortage of precise 
experimental information on the spectrum of spin density fluctuations in simple magnets that 
are adequately described by a Heisenberg spin Hamiltonian. Moreover, the data produced by 
these groups are not in striking agreement with predictions based on linear spin-wave theory; 
predictions that have been known for several decades. Couched in terms of the wavevector- 
dependent susceptibility ~(k), the prediction for zero magnetic field is x(k) rx ( l / k )  near 
the centre of the Brillouin zone; altematively, for a finite magnetic field H, ~(0) a 

Neither of these predictions are in tolerable agreement with available data, much of 
which has been obtained with the neutron scattering technique. The shortage of precise 
experimental data is largely due to the fact that this technique is not ideally suited 
to the measurement of the spectrum of spin density fluctuations. Unfortunately, it is 
the only technique currently available for the measurement of ~ ( k ) ,  which in neutron 
scattering parlance is referred to as the longitudinal specbum. In contrast, the transveme 
specbum, exhausted by single spin-wave events, is well-researched and understood. Indeed, 
measurements of the transverse spectrum are the source of data on spin-wave dispersions 
in magnetic materials. The neutron scattering technique is not ideal for the measurement of 
~ ( k )  because it is not observable in isolation from the relatively intense transverse spec" ,  
unless polarization analysis is employed, although this has the drawback of a significant 
intensity penalty. 

The absence of experimental verification of the divergence of ~ ( k )  at the zone centre, 
due. to a Goldstone mode in the isotropic spin Hamiltonian, prompted investigation of the 
influence of dipolar forces on the susceptibility. At face value, dipolar forces are a prime 
candidate forchanging the structure of ~ ( k )  .because they change the spin symmetry of the 
Hamiltonian (the total spin is no longer a constant of motion). However, the conclusion 
is that these forces do not change the structure of ~(k), as far as k is larger than the 
characteristic wavevectors of the magnetostatic modes. The'effect of dipolar forces, to a 
first approximation, is.simply to reduce by about 50% the value of ~ ( k )  from that obtained 
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for the isotropic spin system. Detailed calculations have been reported 11.21 for realistic 
models of EuO and EuS, both of which are simple face-centred cubic ferromagnets with 
ordering temperatures T, of 69.5 K and 16.5 K, respectively. 

While the investigation of dipolar forces removes an important query in confronting 
theoretical predictions with experimental data, there remains concern about use of a linear 
spin-wave approximation, given that experiments are performed close to T, where the 
susceptibility is enhanced by fluctuations that are precursors to critical effects. Here, we 
report the first findings on the influence of non-linear spin wave interactions on the spin 
density susceptibility, and explicit results for realistic models of EuO and EuS, including 
accounts of dipolar forces. It is shown that x(0) a H-’/’, i.e. the interactions do not 
change the exponent in the divergence with respect to the magnetic field. For weak fields, 
the enhancement of x by non-linear spin fluctuations is as much as 50% for T N 0.9Tc. 
Inclusion of dipolar forces decreases x, as already mentioned, but the relative enhancement 
by non-linear fluctuations remains almost the same. 

Let us denote the spin-wave dispersion in a simple ferromagnet (T < T,) by Ok. The 
frequency- and wavevector-dependent susceptibility for spin density fluctuations, obtained 
from linear spin-wave theory, is 

in which 

Ilk = [eXp(Ok/T) - I]-’ (2)  
is the Bose factor (h = k B  = 1). 

The result for x(k) E x(k,O) obtained from (1) is to be contrasted with the 
corresponding susceptibility for transvem spin fluctuations, namely 2s/Ok, where S is 
the magnitude of the spin (S = 712 for EUO and EuS). From (1) we obtain, using the 
approximation 

l lk  N T/Wk Ok h 4- Dk2 h = gpBH (3) 
the result 

xo(0) = Tuo/81rD~’’h’/’ (4) 
where uo is the volume of the unit cell. The estimate (4) is good for temperatures close to &, 
and it displays the anticipated inverse square-root singularity with respect to the magnetic 
field. It will be shown that, for EuO and EuS and T N Tc, (4) significantly underestimates 
the non-interacting susceptibility. 

Our treatment of non-linear spin-wave interactions is based on two spin-wave events 
described by Dyson’s boson Hamiltonian. Evidence to suppor~ this treatment comes from 
several sources. First, it provides an emcl description of the spin-wave bound state. Second, 
results obtained for the renormalized spin-wave energies are in excellent agreement with 
experimental data. In the same vein, critical temperatures obtained from the theory agree 
well with observed values. 

The structure of the equation for the spin density propagator (Green function) has the 
form of that for a localized singledefect problem of the Lifshitz type, and it can be solved 
by the established method [3]. For the problem in hand, the defect potential is generated 
by the dynamic spin-wave interaction. Further details and an explicit solution for a (one- 
dimensional) chain of spin can be found in I4-61. 

Here, we limit attention to the expression for xfk = 0), and merve for later publication 
the full expression for x(k). 
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2. Rennrmalized spin-wave theory 

The theory of two-spin-wave interactions described by the reduced Hamiltonian of Dyson 
and its treatment within the Hartxee-Fock approximation has recently been reviewed [7]. 
In view of this, the presentation given here is minimal, and is designed to - d l y  do no 
more than define notation and provide the basic concepts. Our Hamiltonian E is the sum 
of an isotropic exchange interaction between spins S,,, located on a Bravais lattice defined 
by vectors TZ, and a Zeeman energy created by a magnetic field in the z direction of the 
coordinate system: 

Here J(m - m’) is the exchange parameter, and is defined such that J(0)  = 0. 

with dispersion: 
The reduced Hamiltonian introduced by Dyson is the sum of non-interacting spin-waves, 

O k  = 2S(J0 - J k )  -t h (6) 

in which S is the magnitude of the spin and 

Jk = J(m)  COS(^ * n ~ ) .  
m 

(7) 

The Dyson Hamiltonian is the lowest-order approximation to the dynamic interaction, and 
c o m t l y  describes two-spin-wave processes, e.g. the two-spin-wave bound state. When 
corrections to the Hartree-Fock approximation for the dynamic interaction are set aside, the 
dispersion relation is modified by a simple temperahiredependent factor. The renormalized 
dispersion is 

where now 

nq = [exp(cq/T) - l l-’ .  (9) 

Results (8) and (9) together give a transcendental equation for the dispersion and occupation 
number. The corresponding magnetization is determined by 

Results for the special case of an exchange interaction restricted to one shell of neighbouring 
magnetic ions, for which Jq = r J y q  and r is the number of ions in the shell, are discussed 
in the qpendix. A realistic model for EuO and EuS contains two shells of neighbours, and 
implementation of the theory is necessarily slightly more complicated than for one shell of 
neighbours. Results for the spin-wave renormalization and magnetization are reported in 
the next section, together with an estimate of the influence of dipolar forces. 

It is well known that dipolar forces have a significant effect on the structure of spin-wave 
theory of a Heisenberg ferromagnet [7,8]. However, at elevated temperatures, where many 
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spin waves are excited, their influence is adequately described by the effect of a magnetic 
field proportional to the magnetization (in this approximation, off-diagonal terms in the 
Hamiltonian that have a considerable impact on low-temperature properties are neglected). 
The theory including dipolar forces can thus be mapped into the one described in the 
previous paragraphs with the magnetic field replaced by the sum of the applied field and 
the anisotropy energy 

in which the constant $ is proportional to the saturation magnetization; values of e for EuO 
and EuS are provided in table 1. 

Table 1. Some useful quantities for EuO and Eus: II is the lattice consrant, T. !he experimental 
mtical temperature, J I  and h h e  NN and N" exchange-interaction wnstants, f the parameter, 
defined in !he texz which mles Lfle dipolar effects. Values of are obtained f" = 
2 ~(Zngp~Mo),  where MO is the observed saturation magnetimtion 

0 (A) Tc (K) JI W) h ( K )  F W) 
EuO 5.12 69.5 0.61 0.12 1.08 
EuS 5.95 1-55 024 -0.12 0.61 

With the inclusion of the dipolar energy as described above, the magnetization and 
dispersion are determined by the coupled equations (8) and (IO) together with (9) and 
(1 1). An investigation of the theory, using a numerical method, is reported in section 3. 
Fortunately, some key aspects of the results can be understood from a simple analysis 
reported in the appendix. The equations admit physically acceptable solutions up to a 
maximum temperature that is quite close to the observed critical temperature. AI this 
maximum temperature, the magnetization and renormalization of the spin-wave dispersion 
are finite, and the values obtained in a numerical analysis are very close to the estimates 
reported in the appendix. On the question of the influence of the dipolar force, analytic and 
numerical works are in good agreement, and the induced changes are found to reduce the 
discrepancy between theory and experimental data. At this juncture we mention that Passell 
and co-workers [9] also report numerical calculations of the magnetization and spin-wave 
r enorma l ion  including dipolar energy. However, in their treatment of the dipolar energy 
the magnetization is inserted (experimental values) whereas here the entire set of physical 
variables is mated in a self-consistent manner. 

3. Magnetization and renormalized dispersion 

The theory outlined in section 2 has been applied to a realistic model of the magnetic 
salts EuO and EuS; various parameters are gathered in table 1. In the absence of 
dipolar anisotropy (e = 0). the maximum temperature at which there is a solution of 
the transcendental equation is 62.5K for EuO and 16.2K for EuS. Including the dipolar 
anisotropy in the approximate form described in the previous paragraph increases this 
temperature to 63.5 K and 16.8 K respectively. It is gratifying to find that these changes are 
in good agreement with the estimates derived in the appendix. as are the dipolar-induced 
changes to the magnetization and spin-wave renormalization. 
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Figures 1 and 2 contain results for (Sz ) /S  and cq for EuO and EuS as functions of 
the temperature, together with available experimental data. The applied field is zero in all 
cases. The dipolar anisotropy is included in the form described in section 2, and for EuO 
it goes toward reducing discrepancies between theoretical and experimental data, while for 
EuS no substantial improvement is obtained. 

- 0.2 (a) 
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Fwre 1. Reduced magnetization against temperame 
for E n 0  (0). and EuS (b). The broken c w e  is the 
result for the pure exchange Heisenberg fer"ag.net 
while the full curve also takes into account the dipolar 
interaction as described in d o n  2. The open circles 
are the experimental results [9]. 
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Figure 2. The ratio between the renormalized and 
bare spin-wave frequency at h e  wne boundary for 
EuO (a) and €US (b) is nported as a function of 
temperam. In (a) the full curve is the result for 
the pure exchange Heisenberg fernmagnet and uu: 
long-dash broken, broken and chain curve the results 
with the dipolar interaction in  the (001). (011) and 
( I  11) direction, respectively. In (b) all the curves are 
obtained without any dipolar interaction and refer to Ihe 
(01) Oongdash broken curve), (011) (broken curve). 
and (111) (chain curve) direction, respectively. The 
symbols are experimental results for some values of 
k 81; full circles: k = 0.2A-I, open circles: k = 
0.6A-I. open triangles: k = 0.8A". open squares: 
k =  M A '  . 1 

The calculation given in the appendix for a nearest-neighbour exchange model predicts 
that the magnetization and spin-wave renormalization should be 0.33 and 0.50, respectively, 
for .$ = 0 and at the maximum temperature. The good agreement between the full numerical 
analysis and these estimates vindicates the assumption that, for high temperatures, it is 
adequate to use ne 2 TIEq. 



3246 A Cuccoli et a1 

4. Longitudinal susceptibility: theory 

The longitudinal susceptibility in the classical limit is proportional to the mean-square 
fluctuation in the magnetization, i.e. 

x(W ( (S i ) ' )  k # 0 (12) 

where is the spatial Fourier transform of the magnetization. For a quantum mechanical 
calculation, a convenient way to proceed is to obtain the Zubarev Green function for 
the magnetization density operator. The Green function evaluated at zero frequency is 
proportional to ~ ( k ) ;  see, for example, [IO]. Calculated for linear spin-waves with 
dispersion oq the Green function, denoted by K&), is simply related to the wavevector- 
and fquency-dependent susceptibility (1). namely 

xo(W = x o ( k 0 )  = -Ko(k). 

Taking the limit k -+ 0 in ,y&, 0) leads to 

In the classical limit nq >> 1, and then xo(0) is seen to be the mean-square fluctuation 
in the magnetization. On using the approximation inq N T / o ,  in (14). replacing the sum 
by an integral, in the standard manner, and using the low4 expansion for ok we arrive 
at the result (4). For the simplified nearest-neighbours model discussed in the appendix, 
the behaviour of the macroscopic static susceptibility for vanishing field is easily recovered 
without introducing the continuum approximation forthe spin wave dispersion. From (A14). 
when the effects of renormalization are neglected, we get 

where P(8) is the derivative of the extended Watson integral. Using the expansion (M), 
together with D = 2 J S d  and WO = n3/4, we see that (15) is identical to (4). 

The Green function for the reduced Hamiltonian of Dyson cannot be calculated without 
approximation. In the present work, the approximation used is well Vied and tested; it 
yields the exact spectrum of the two-spin-wave bound state, and is entirely consistent with 
the renormalized spin-wave theory described in section 2. The full form of the Green 
function is quite complicated, and it is readily obtained from the main result provided by 
Balucani and co-workers [5] in their discussion of fluctuations in the Heisenberg chain. In 
view of this, we limit ourselves to providing the results for the susceptibility without details 
of the intermediate working. One new aspect of our result is the generalization to two shells 
of neighbours labelled by i = 1.2. The Fourier transform of the exchange interaction is 

(16) 

where are standard geometric factors with the normalization yi') = 1, and 0, = ZriJi. 
One effect of the spin-wave interactions is to renormalize the dispersion as described in 

section 2. Hence, in the remaining discussion nq is the function (9) in which the dispersion 
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eq depends on temperature. The function K ( k )  used in the following is simply the right- 
hand si& of ( I )  with o set to 0 and os replaced by eq. 

The susceptibility is expressed in terms of three functions, in addition to K, that have 
a structure similar to K .  The three additional functions of interest ate: 

I 
A " ' = - - ~ ~ n , ( l + n , ) ( I  - ~ t ' )  

N T  'I 

in terms of which 

x(0) = -K(O) + (&(A"')' + 6j(A'2')2 + Ol&[(A'")ZB'Z' + (A"')'B"' 
- ZA"'A"'C]}[ 1 + &B") + &B'" + 8i&(B"'B" - Cz)l-'. (18) 

Several features of this expression merit some comment. First, in the limit of m o  magnetic 
field x(0) cx h-'!'. This behaviour arises, for temperahues less than the maximum 
temperature, because the three fundons listed in (17) are not singular for h + 0 owing to 
the additional geometric factors in the integrands ((1 - yq) 0: q2 for q --f 0). Note that, if 
we found a result for x that was not singular for h + 0, the result would be unacceptable, 
since the singularity is a consequence of a spin symmetry of the Hamiltonian, which must 
be respected by approximations to observable response functions. Hence, the significant 
finding is that the exponent of h in x(0) is the same as in the non-interacting spin-wave 
approximation. Second, we find the result x 2 ,yo. This result is in accord with physical 
intuition because the corrections to ,yo in (18) are created by the spin fluctuations, which 
eventually drive the continuous phase transition as T T,. The influence of the spin 
fluctuations on the susceptibility evaluated in the limit h + 0 is obtained from the relation, 
derived from ( I  8) 

If we evaluate K ( 0 )  in the same fashion as Ko(O), this is evaluated to obtain the estimate 
(4) 

where the temperature-dependent spin-wave stiffness D ( T )  is derived from E,. namely 

= D(T)q' for h =0, nq << 1. (21) 

At low temperatures, D(O)/D(T)  increases from unity at T = 0 with a term proportional 
to T5/'. Figure 3 shows the temperature dependence of [ D ( 0 ) / D ( T ) ] 3 / 2  for EuO and EuS 
over the entire temperature range for which HameeFock theory is valid. 
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Finally, we remark on the structure of x(0) evaluated with the analysis discussed in the 
appendix, in which there is just a single shell of ions. With a more or less obvious notation, 
for a single shell of ions the result (18) reduces to 

With the approximation n,(l + n,) N ( T / C , ) ~  we have for the case of zero magnetic field 

A = - T l / e 2  B = -T/e2 (23) 

where I is the Watson integral and e is the renormalized exchange integral, i.e. 

Perhaps the most interesting aspect of these expressions is that, at the maximum temperature 
for which the Hamee-Fock scheme admits a physical solution of the transcendental 
equations for the spin-wave renormalization, the analysis in the appendix leads to the result 

BT 
e2 

I + BB = I - - = 0. 

Hence, within the approximate analysis based on n, N TIE,. which is shown in section 3 to 
provide a quantitative description of (exact) numerical results, the maximum temperature for 
a physical solution is also the temperature at which the additional term in the susceptibility, 
which arises from spin-wave interactions. diverges too. It is particularly satisfying that the 
divergence with respect to the field h is the same as that of K(O) ,  i.e. at the (zero-field) 
maximum temperature T = eoS/4 we obtain 

1 f B B  ci h’I2 (26) 

in the limit h + 0, while the function A in the numerator is finite. 

5. Longitudinal susceptibility: predictions for EuO and EuS 

The result (18) for the susceptibility has been evaluated for the same realistic model of 
EuO and EuS as we used in section 3 to investigate the magnetization and spin-wave 
renormalization. We report for these two compounds our predictions with respect to the 
dependence of the susceptibility on temperature, magnetic field and dipolar anisotropy. 

Results for [D(0 ) /D(T) ]3 /2  in figure 3 give a measure of the influence of spin 
fluctuations on the susceptibility as a function of temperature. In the temperature range 
covered in the figures for both materials the susceptibility increases by a factor of about two, 
and beyond the maximum temperature contained in the figure the susceptibility continues 
to increase. 

In figure 4 we show for EuO and EuS the field dependence of ,y and xo. The log-log 
plots illustrate the power law behaviour with respect to h, which is common to x and 
xo. At the chosen relatively high temperature we see a significant enhancement of the 
susceptibility by the spin fluctuation effects contained in x .  while the enhancement is found 
to be negligible at lower temperatures (T 5 0.7Tc), as might be expected. We draw attention 
to the mild field dependence of (x - xo). 
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Figure 3. The ratio [D(0)/D(T)l3fl = K ( T ) / K ( O )  
against lemperaturr for EuO (a) and EuS (b). 

Figure 4. Macmscopic static susceptibility against 
applied field for EuO a( 7 = M)K (0 )  and EuS at 
T = 16K (b). The broken and full curyes refer to 
the non-intemting and interacting case. respectively, 
and the Zeeman energy h = gpsH is in UN& of K. 

6. Conclusions 

The work reported has essentially two threads. While the main aim is to estimate the 
influence of spin fluctuations on the longitudinal susceptibility, this naturally entails a study 
of magnetization and spin-wave renormalization. Results from the latter part of the study 
are in accord with previous theoretical findings and available experimental data. A new 
feature of our theoretical work is that the dipole energy contribution is handled in a fully 
consistent manner, whereas previously recome was made to experimental data. 

Our results for the susceptibility show the significant underestimate of spin fluctuations 
by the standard spin-wave expression. For a temperature N 0.96Tc the fluctuations more 
than double the size of the susceptibility, and on approaching the critical temperature from 
below the susceptibility displays a power law divergence. This, together with other aspects 
of the study, are clearly revealed in an analysis of a simple model calculation appropriate 
at high temperatures. 

Our results for the longitudinal susceptibility of EuO and EuS can be directly tested with 
neutron scattering experiments. Less direct evidence is contained in the analysis of muon 
spin relaxation experiments, where the relaxation rate is proportional to a weighted integral 
of the susceptibility x(h) divided by the damping rate for magnetization fluctuations. 
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Appendix 

While a numerical method must be used to obtain a complete solution of the transcendental 
equations for the magnetization and renormalization factor, some useful insight to the nature 
of the solutions can be obtained by elementary analysis, based on a nearest-neighbour model 
and high-temperature expansion of the Bose factor. 

First of all we recall that at very low temperatures the magnetization can be expanded 
in a power series in T I J ,  and for a simple magnet the leading-order contribution from the 
dynamic interaction is found to be proportional to ( T / J ) 4 .  Furthermore, a quantum spin 
reduction is present due to the dipolar anisotropy. However, due to the high value of the 
spin, this reduction tuns out to be negligible in the case of interest, being less than 0.2% 
and 0.6% for EuO and EuS, respectively. 

The 
equations to be analyzed are 

Here, attention is focused on the high-temperature properties of the theory. 

and 

in which the spin-wave dispersion 

Ek = eo(1 - c/s)(I - n) +cm + h (A3) 

and eo = 2 r J S ,  the exchange interactions king limited to the first shell of neighbours. 
For high temperatures, T >> J, it is reasonable to approximate the Bose distribution factor 
by nk = TIEL. In this instance, the coupled equations can be expressed in terms of the 
extended Watson integral 

The series expansion for a FCC lattice is 

where f(0) 1: 1.3447. Equations (AI) and (A2) reduce in the high-temperature limit to 

(A61 
T 
eS 

m = 1 - - I ( p )  
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and 

T 
e 

c =  -[1 - B I ( B ) ] .  

Here, 

applied magnetic field h. With 6 = h = 0, x = e/eo satisfies the equation 

= ( t m  + h) /e  with e = eo(l -CIS). 
To begin with, let us set aside the contribution to E,$”) from the dipolar forces and the 

x(l - x )  = (T/eoS) (A8) 

T/eoS < 1/4. At the maximum temperature we find which admits real solutions for r 
e/eg = 112 and 

m = 1 - fI(0) = 0.33 FCC. 649) 

These values are in tolerable agreement with the values obtained from the full numerical 
solutions reported in the main text; this finding gives confidence in our approximate 
treatment of the transcendental equations. 

Tuming next to the influence of dipolar forces on the magnetization and renormalization, 
still in the absence of any applied magnetic field, we will exploit the fact that the strength 
of the dipolar forces is weak compared to the exchange forces, i.e. 6 < eo. Consider, 
for example, EuO. The value J = 0.74K gives a critical temperature for the spherical 
model that agrees with the measured value, and t / e o  = 0.016. Working to leading order in 
t /eo,  we find that the coupled equations admit real solutions for the magnetization up to a 
temperature 

at which the renormalization parameter is 

and the corresponding value of the magnetization is 

The dipolar force is seen to increase the critical temperature and magnetization, and 
decrease the renormalization function. Evaluated for the simplified model of EuO, with 
t /eo  = 0.016, the dipolar forces increase the critical temperature by 1.4% and the 
corresponding magnetization by 12.8%. 

For the particular case of an applied magnetic field the results (AiO) and (Al l )  apply, 
with m replaced by unity and 6 = h, where h is the &man energy. The corresponding 
magnetization at the maximum temperame and h/eo < 1 is 

m = l - 1 1  ,[ (0) - 1.1695(h/e0)”~]. (A 13) 
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The same simplified method of analysis can be applied to the static susceptibility; from 
(22) and the definition of A and B we get 

in which f = r /xz  and the reduced temperature, r ,  and spin-wave renormalization, x ,  are 
related by 

x ( l  - x )  = r [ l  - p I ( p ) ] .  (-415) 

Some features of this results are mentioned in the main text. Here we note that the 
susceptibility increases with temperature (see figure 3) and diverges at the maximum 
temperature. 
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